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Abstract

Zero-shot Recognition (ZSR) is to learn recognition
models for novel classes without labeled data. It is a
challenging task and has drawn considerable attention
in recent years. The basic idea is to transfer knowl-
edge from seen classes via the shared attributes. This
paper focus on the transductive ZSR, i.e., we have un-
labeled data for novel classes. Instead of learning mod-
els for seen and novel classes separately as in existing
works, we put forward a novel joint learning approach
which learns the shared model space (SMS) for models
such that the knowledge can be effectively transferred
between classes using the attributes. An effective algo-
rithm is proposed for optimization. We conduct com-
prehensive experiments on three benchmark datasets for
ZSR. The results demonstrates that the proposed SMS
can significantly outperform the state-of-the-art related
approaches which validates its efficacy for the ZSR task.

Introduction

Learning a recognition model, e.g., a SVM classifier that
tells an object is a dog or not, always requires sufficient
manually labeled data for the target class (Bishop and other-
s 2006). However, with the explosive growth of visual data
and the huge number of potential classes, such as the im-
ages and the annotated tags in Flickr, it is expensive and
burdensome to collect well-labeled training data for new
classes (Lampert, Nickisch, and Harmeling 2014). To tack-
le this problem, few-shot recognition (Mensink et al. 2013;
Habibian, Mensink, and Snoek 2014), and the extreme situ-
ation zero-shot recognition (Palatucci et al. 2009; Lampert,
Nickisch, and Harmeling 2009; Akata et al. 2013; Yu et
al. 2013; Jayaraman and Grauman 2014; Fu et al. 2014b;
Romera-Paredes and Torr 2015), have been proposed and at-
tracted considerable interest from academia in recent years.

The goal of zero-shot recognition is to learn models with
no labeled data for novel (target) class. We can notice that
there is no labeled data for target class, but the recognition
models are generally built in a supervised way. To address
this critical problem for ZSR, an intermediary space which
is shared among classes is utilized for transferring knowl-
edge from seen (source) classes that have sufficient labeled
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Figure 1: Attribute-based zero-shot recognition.

data to target classes. Two widely used intermediates are at-
tributes (Lampert, Nickisch, and Harmeling 2014) and la-
bel semantic representations (Socher et al. 2013). The ba-
sic framework of attribute-based! ZSR is illustrated in Fig-
ure 1. Each class (both source and target) is represented by
the attributes (e.g., “black”, “water”). At training stage, the
attribute recognition models are learned using the source
images from source classes and the corresponding attribute
representations. At test stage, given an image from target
class, we first generate its attribute representation using the
attribute models. Because the attributes are shared among
classes, the models learned from source classes also work
for target classes. Then by comparing the similarity between
the attribute representation of this image and the representa-
tions of each target class, the recognition result is generated.
Based on the shared attributes, the knowledge can be trans-
ferred from source classes to target classes, and thus effec-
tive recognition models can be constructed for target classes.

This paper focuses on ZSR with the transductive set-
ting (Rohrbach, Ebert, and Schiele 2013; Fu et al. 2014a) in
which the unlabeled (target) images from the target classes
are available. Although the target images have no label in-
formation, we can still discover some class structures from
them which can promote the recognition accuracy. For ex-
ample, Rohrbach et al. proposed a label propagation method

'Both intermediates represent class labels in a shared space.
The only difference is how the representations are constructed. We
consistently use the notation attribute when there is no ambiguity.



Source Classes:
f ¢ Sheep, Fox, ...
f2
S "
f3

Model Space

[ |
Class-Attribute
Matrix

! i h% R Target Classes:
! | — . »\Bear, Hamster, .
' Target Images, Class Models

Figure 2: Framework overview.

based on the manifold structure (Belkin, Niyogi, and Sind-
hwani 2006) of target class. In this paper, we propose a nov-
el transductive ZSR approach based on shared model space
learning (SMS). The framework is illustrated in Figure 2.
Our approach has several important characteristics. Firstly,
noticing that the ultimate goal of ZSR is to learn class mod-
els, we propose to learn the models that can directly connect
images and labels instead of learning attribute models con-
necting images and attributes. At test stage, we can generate
the class labels directly from images without using attributes
as intermediary level. Secondly, because we have no labeled
data for directly building class models for target class, we
propose to learn a shared model space for classes instead of
the shared attribute space in existing works. Within this s-
pace, the model parameters for a target class can be directly
generated using the attribute representation. Thus the knowl-
edge can be transferred into the target class. Thirdly, unlike
the disjointed framework in existing approaches that treat-
s source classes and target classes separately, we propose a
joint learning framework that takes both into consideration.
In summary, this paper makes several contributions below.

e We propose a novel transductive ZSR approach via shared
model space learning. With the shared model space and
class attributes, the recognition model which directly gen-
erates label for target class can be effectively constructed.

e We propose a joint learning framework that takes both
source and target classes into account at training stage
which leads to superior ZSR recognition performance. An
effective and efficient learning algorithm is also proposed.

e We conduct extensive experiments on three benchmark
datasets for ZSR. The results show that the proposed ap-
proach can significantly outperform the state-of-the-art
related approaches, which demonstrates its effectiveness.

Related Work
Attribute-based ZSR

With class attributes as the intermediate, the knowledge
from source classes can be transferred into the target classes
because the attributes are shared among classes. In Direc-
t/Indirect Attribute Prediction (Farhadi et al. 2009; Lampert,
Nickisch, and Harmeling 2014) (DAP/TAP), attribute classi-
fiers are learned from source classes and then apply to tar-

get images. The recognition result is obtained by comparing
the recognized attributes of images with the class attributes.
In Attribute Label Embedding (Akata et al. 2013)(ALE), an
embedding space maximizing the compatibility between im-
ages and labels is learned. In (Yu and Aloimonos 2010), top-
ic model is applied to predict the attributes for target images.
The above approaches use manually defined attributes
such as “white” and “water”. Another line is to use the
word vector (Turney and Pantel 2010; Huang et al. 2012;
Mikolov et al. 2013) which represents each label by a vec-
tor learned from large-scale textual database like Wikipedia.
In Cross-modal transfer (Socher et al. 2013), a regression
model between images and word vectors are learned and
the recognition is performed using a probabilistic model. In
(Norouzi et al. 2013), a convex combination approach is pro-
posed for ZSR. In (Elhoseiny, Saleh, and Elgammal 2013), a
constrained optimization formulation combining regression
function, knowledge transfer function is proposed for ZSR.
In (Fu et al. 2015), the manifold structure in label semantic
space is considered using absorbing Markov chain process.
Besides, some other attribute learning approaches have
been proposed (Rastegari, Farhadi, and Forsyth 2012; Yu et
al. 2013; Guo et al. 2015) to learn latent attributes for class
satisfying some specific properties such as predictability and
discriminability. They have reached some promising results.

Transductive ZSR

Transductive ZSR is an emerging topic which extends con-
ventional ZSR into a semi-supervised learning scenario
where labeled source images and unlabeled target images
are available. In Propagated Semantic Transfer (Rohrbach,
Ebert, and Schiele 2013) (PST), a projection which maps
images to the label semantic space is learned from source
classes. Then the target images are projected to the space.
Finally, a label propagation step is performed to exploit the
manifold structure of data. In Transductive Multi-view em-
bedding (Fu et al. 2014a), an embedding space for both im-
ages and attributes is learned to rectify the projection shift.
Then a Bayesian label propagation is adopted to generate
the label for target images. Both approaches adopts the label
semantic space as the intermediate for knowledge transfer
while no class model directly connecting images and labels
is learned. Besides, they both adopt disjointed steps which
learns projections from images to semantic space with only
source images and generates labels with only target images.

The Proposed Approach
Problem Definition and Notations
We have a set of source classes C* = {cf,...,c;_} and
n, labeled source images D* = {(x{,y{), ..., (X}, ¥5.)}s
where x{ € R is the image feature and y{ € {0, 1}
is the corresponding label vector which has y;; = 1 if

the image belongs to class ¢; or 0 otherwise. We are giv-
en target images D' = {x{,...,x!, } from k; target class-
es C' = {c},...,c},} satisfying C* N C* = . The goal of
transductive ZSR is to build models which can predict the
label ¢(x!) given x! with no labeled training data for target



Table 1: Notations and descriptions in this paper.

Notation | Description | Notation [ Description
X, Xy images Ng, Nt #images
Y, Y, label matrix d #dimension
A A, attribute matrix r #attributes

W3, W? | recognition model ks, Ky #£classes

\% shared parameters a, B parameters

classes. For each class ¢; € C* U Ct, we have an attribute
representation a; € R” for it. We summarize some notations
in this paper and the corresponding descriptions in Table 1.

Shared Model Space Learning

In this paper, we consider the multi-class recognition, whose
recognition result is the class whose model can generate the
maximal response among all the classes (Hsu and Lin 2002),

c(x) = argmax, f.(x) (D

where x is the input feature and f. is the recognition model
for class c¢. To construct the models, we can minimize the
following loss function given a set of labeled data (x;,y;),

H}in Zzé(fc(xi)ayic) +R(fc) 2

where £(a, b) is a loss function for recognition error, such as
hinge loss or squared loss, and R is the regularization term
on model f.. In this paper, we adopt the linear model, i.e.,
fo(x) = xw’, where w, € R? is the model parameter of f...

For source classes, we can train a model for each class
because the labeled data is available. However, we have no
labeled data for target class such that we can not adopt Eq.
(2) to learn parameters. So we need to exploit knowledge
from the labeled data in source classes and the unlabeled
data in target classes simultaneously to learn the parameters.

Consider the class-model matrix W = [w1, ..., w]. One
can naturally notice that the model parameters are affected
by the properties of a class. Different classes that have d-
ifferent properties will have different models. The previous
research on attributes indicates that attributes can well char-
acterize the properties of a class. Based on this idea, it is
reasonable to assume that there is a function g shared by all
classes that takes attributes of a class as the input and outputs
the class model, i.e., w. = g(a.). With this key assumption,
we get the general learning framework for transductive ZSR,

ns ks
min R(g(ac)) + Y Y (xi(g(ac)), vic)

Y
g i=1 c=1

3

ne ke

ta Z Z Z(Xj (g(ac))/7 yJC)

j=1c=1

The above learning framework has three important charac-
teristics which are also the key differences from existing
works. Firstly, it learns the class models that can directly

generate the class labels from images, instead of using at-
tributes as the intermediate. The one-step strategy can lead
to less information loss at test stage, and thus we can expec-
t better recognition result. Secondly, it regards attributes as
the seed parameters for class models, instead of the recog-
nition target of attribute models. Thirdly, it adopts a joint
learning framework to learn models with labeled source da-
ta and unlabeled target data together, instead of only using
source data. Because the target data is considered, the mod-
els can not only effectively transfer knowledge from source
data, but also exploit the distribution of target data, which is
an ideal property for knowledge transfer (Long et al. 2014).

Now we need to specify the function g. In this paper, we
adopt the linear function, i.e., w. = g(a.) = a.V’, where
V € R is the shared parameters. Although the linear
function is simple, we find out in our experiment it works
very well. Besides, we adopt the squared loss for the loss
function ¢, and the ridge regularization for R, which leads
to the specific objective function of the proposed approach:

min [ X, VAL = Y7 + ol X VA, = Yo7

@)
+ BIVA||E st lyhllo =yi1,, =17 =1,...,m
where o and /3 are hyper parameters, || - || denotes the
Frobenius norm of matrix, || - ||o denotes the ¢y-norm of
a vector, and 1, is a vector in which all elements are 1.
Here, we can observe that the class-model matrix is factor-
ized into the product of two matrices, i.e., W = AV’, which
is similar to the matrix factorization techniques (Furnas et
al. 1988). Analogous to MF, we can regard a. as the laten-
t representation of a class model that reveals the properties
of a class, and 'V as the basis in the latent space shared a-
mong classes. Motivated by this explanation, we term our
approach as Shared Model Space Learning. In addition, s-
ince V appears in both source classes and target classes, it
can work as the bridge to transfer knowledge between them.

Optimization Algorithm

We face the “chicken or the egg” dilemma when we opti-
mize Eq. (4). To predict the label matrix Y for target im-
ages, we need to first know the shared parameters V. On the
other hand, to learn V, we need to know the labels of tar-
get images. To address this problem, we propose an iterative
algorithm using the pseudo labels. Specifically, we can ap-
ply some ZSR approaches, like PST, to generate the initial
pseudo labels Y. Then we can learn the shared parameter-
s V given the pseudo labels. Because now V contains the
knowledge from source classes, we can use it to refine the
pseudo labels. On the other hand, the refined pseudo label-
s can further improve the quality of V. Therefore, the re-
finement procedure can improve the quality of V and Y in
each iteration until convergence. In the Experiment section,
we empirically demonstrate the effectiveness of the iterative
algorithm. The detailed steps for the algorithm are as below.

Fix Y and refine V. Firstly, we re-denote the notations:

Ys Ons ><~kt

X =X vVaXy], Y =
[Xs5 vVaXi] [owks JaY,

|.a=iaial



Algorithm 1 Transductive ZSR with Shared Model Space

Input: Source images X; Source labels Y;
Target images X;; Parameters « and [3;
Source attributes A ;; Target attributes Ay;

Output: Shared model space V;

Prediction for target images Y;
1: Initialize Y, using an existing ZSR approach;
2: repeat

3:  Update V by Eq. (7);

4:  Update Y, by Eq. (9);

5

6

: until Convergence;
: Return V and Yy,

To simplify the problem, we approximate Eq. (4) as follows,
min Oy = |XVA' = Y7+ B[VAIE ()

Now we can calculate the derivative of Oy w.r.t. V as below,

aa% = 2X'XVA'A — 2X'YA + 28VA’A  (6)
By setting the derivative to 0, we obtain the solution for V,
V « (X'X + B1;) ' X'YA(A'A) ! @)

Fix V and update Y. We can observe thzit Eq. (4) is row
decoupled. Thus we can update each row in Y, individually.
And the objective function w.r.t. 5/5- can be written as below,

gMMVM—%%&Wﬁmzﬁuzl ®)
Solving the above problem leads to the updating rule below,

®

e tyat
+ J 1, ifc=argmax x;Va,
yjc -

0, otherwise
We can observe that Eq. (9) is the special case of Eq. (1) in
which we specify the form for f. We can iterate the above

two steps to refine the prediction until convergence. The w-
hole optimization algorithm is summarized in Algorithm 1.

Discussion
We analyze the error bound of our approach. First we denote

z;. = vec(x}a.) € R™ u = vec(V) € R¥" (10)

where vec(+) is the vectorization operation which turns a ma-
trix into a vector. With the above transformation, it is easy to
verify x; Val, = z;.u’. So we can rewrite Eq. (2) as follows,

min Z Z Uz, yic) + R(u) eY)
Y k€D UD! cecruct

which leads to a domain adaptation problem (Ben-David et
al. 2006). Now denote the true labeling function as h(z), and
the learned prediction function as f(z) as in Eq. (9). We can
define the expected error of f in D® and D! respectively as

€s(f) = Eqnp, [[1(2) = f(2)]]
€1(f) = Eznp,[[1(2) — f(2)]]

(12)

In this paper we follow the Theorem 1 in (Ben-David et al.
2006). Suppose the hypothesis space H containing f is of
VC-dimension d, then with probability at least 1 — 4§, for
every f € H, its expected error in D* is bounded as follows

4 - 2 4
) e+ Edog T rogdy

d 6)
+ dp(D*, DY) + A

where e denotes the base of natural logarithm, é,(f) is the
empirical error of f in D®, A = inf ;ey[es(f) + e.(f)], and
d3,(D?, DY) is the distribution distance between D* and D*.

Here we are interested in the first term €,( f) and the third
term dy (D?, D?) in the error bound. In fact, these two terms
reveal the two important factors that affect the ZSR perfor-
mance. The first factor is the quality of the attributes which
controls the first term. In this paper, a key assumption we
make is that the attributes can well characterize the proper-
ties of a class, and thus the class model can be derived from
the attributes. From Eq. (10), we can observe that we trans-
form the original features into another feature space using
the attributes. If we have good attributes, it is expected that
the transformed features have legible class structures such
that we can learn a model that has small error. On the oth-
er hand, the bad attributes, e.g., random attributes, may re-
sult in indistinguishable transformed features such that the
learned model may have large error. The second factor is
the relatedness between source classes, target classes, and
attributes, which controls the third term. The fundamental
assumption in ZSR is that the attributes are shared between
source and target classes. In the best situation where source
images and target images have the same conditional distri-
bution given an attribute, and suppose all images are i.i.d.,
the distribution distance, such as Maximum Mean Discrep-
ancy (MMD) (Pan, Kwok, and Yang 2008) will be small. On
the other hand, if the attributes in the source classes does not
appear in the target classes at all and vice versa, there will
be very large distribution distance. For example, we define
a set of attributes that half for animals and the other half
for face. The source classes are for animal recognition, but
the target classes are for face recognition. Although the at-
tributes can well distinguish different classes, such attributes
can not transfer knowledge at all. Based on the above analy-
sis, we can summarize two principles to design attributes for
ZSR. Firstly, to guarantee small error €,(f), the attributes
should well characterize the properties of classes. Secondly,
to reduce the distribution distance dy (D?, D), the attributes
should be strongly related to both source and target classes.

Experiment
Datasets and Settings

To evaluate the efficacy of the propose approach, we conduct
extensive experiments on three benchmark datasets for ZS-
R. The first dataset is Animal with Attributes (AwA) (Lam-
pert, Nickisch, and Harmeling 2014). This dataset contains
30,475 images from 50 animal classes, such as “dog” and
“fox”. It contains 85 binary attributes and the class-attribute
matrix is given. In this dataset, 40 classes with 24, 295 im-
ages are adopted as the source classes and 10 images with



Table 2: The statistics of datasets.
[ AwA [ aPY [ SUN

#source class 40 20 707
#source image | 24,295 | 12,695 | 14,140
#target class 10 12 10
#target images | 6,180 2,644 200
#attribute 85 64 102
#dimension 4,096 9,751 | 17,032

6,180 images are adopted as the target classes. We follow
the standard setting from the dataset for the source/target
split. The second dataset is aPascal-aYahoo (aPY) (Farha-
di et al. 2009). aPascal dataset has 20 types of objects for
PASCAL VOC2008 challenge, such as “people” and “dog”.
It contains 12,695 images. aYahoo dataset was collected
from Yahoo image search. It has 12 classes which are simi-
lar but different from the ones in aPascal, such as “centaur”
and “wolf”. It contains 2,644 images. There are 64 binary
attributes and each image is annotated by them. We aver-
age the attribute representations of the images belonging to
the same class to obtain the class-attribute representation.
In aPY, the aPascal is adopted as the source, and the aYa-
hoo is adopted as the target. The third dataset is SUN scene
recognition dataset (Patterson and Hays 2012). This is a fine-
grained dataset in which the difference between classes is
quite small. It has 717 scenes such as “airport” and “palace”,
and each scene has 20 images. There are 102 attributes in
this dataset and each image is annotated by them. We also
average the image attributes to obtain the class attributes.
For this dataset, we use 707 classes as the source and 10
classes as the target. The source/target split follows the set-
ting in (Jayaraman and Grauman 2014). For AwA dataset,
we extract the deep feature using the DeCAF (Donahue et
al. 2014). For aPY and SUN dataset, we use the author-
provided features, including HOG, color histograms, and so
on. The statistics of three benchmarks are shown in Table 2.

We compare the proposed SMS to the following state-of-
the-arts. The attribute-based approaches include Direct At-
tribute Prediction (Lampert, Nickisch, and Harmeling 2014)
(DAP) and ZSR with Unreliable Attributes (Jayaraman and
Grauman 2014) (ZUA). Besides, the transductive ZSR ap-
proaches have Propagated Semantic Transfer (Rohrbach, E-
bert, and Schiele 2013) (PST), and Transductive Multi-view
Embedding (Fu et al. 2014a) (TME). Besides, we adopt as
evaluation metric the recognition accuracy on target classes.

Implementation Details

Our approach has two hyper parameters, o and 3. In this pa-
per, we adopt the cross validation (CV) to determine the val-
ues for them. For AwWA and aPY datasets, we perform 4-fold
CV. For SUN dataset, we perform 10-fold CV. Specifically,
to perform k-fold CV, we split the source classes equally into
k parts. In each fold, we choose one part as the validation set
and the other k—1 parts form the training set. In addition, the
values for a and S are selected from {0.01,0.1, 1,10, 100}.

Our optimization algorithm needs to initialize the pseudo

Table 3: ZSR results.
Accuracy (%) [ AWA | aPY | SUN

DAP 51.00 | 18.12 | 52.50
ZUA 53.75 | 26.02 | 56.00
PST 54.10 | 24.11 | 64.50
TME 69.91 | 28.47 | 68.50
SMS 78.47 | 39.03 | 82.00

labels Y. As we mentioned above, we can adopt any ex-
isting ZSR approaches to generate the initial pseudo labels.
For fair comparison, in this paper, we use the model that is
learned in CV with the best CV result for self-initialization.

Results on Benchmarks

The ZSR accuracy of the proposed SMS and four baseline
approaches on three benchmark datasets are summarized in
Table 3. We can observe that SMS achieves much better per-
formance than the four baseline approaches with statistical
significance. The recognition accuracies of SMS on three
datasets are 78.47%, 39.03%, and 82.00%, and the perfor-
mance improvements compared with the best baseline ap-
proach TME are 8.56%, 10.56%, and 13.50% respectively,
i.e., the error reductions are 28.45%, 14.76%, and 42.86%.
Firstly, SMS achieves more than 80% recognition accura-
cy on AwWA and SUN dataset. This is a remarkable result for
10-class classification considering we have no labeled data
for target classes. One may argue that the result on AwWA is
due to the powerful visual feature. Here we admit that the
DeCAF feature indeed improves the performance on AwA.
But we can also notice the big performance gap between
SMS and baseline approaches which indicates that the dif-
ference in approaches plays an important role for this result.
Secondly, ZUA achieves comparable performance to PST
even though it makes no use of target images at all. In ZUA,
the unreliability of attributes is taken into consideration. In
our discussion about Eq. (13), we mentioned that the recog-
nition accuracy on target classes partially relies on the qual-
ity of attributes. ZUA tries to construct robust models for
target classes that accounts for the unreliability of attributes
by utilizing the error tendencies of the attributes. Because it
alleviates the effect of bad attributes, it can achieve compa-
rable results to transductive ZSR approaches. The proposed
SMS does not consider this situation. Thus it is expected
that SMS can achieve better performance if the unreliability
is considered. We leave this problem to our future research.
Lastly, SMS can significantly outperform the other t-
wo transductive ZSR approaches. As we have mentioned
above, SMS has three important characteristics which are
also the main differences from PST and TME. (1) SMS di-
rectly learns the class models instead of the attribute models.
(2) The attributes are utilized as the parameters to gener-
ate the class models, instead of as the intermediary level in
the recognition procedure. (3) SMS adopts a joint learning
framework that considers source and target images simulta-
neously, while the others utilize disjoint methods. The re-
sults demonstrate the effectiveness of above characteristics.
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Figure 4: Recognition accuracy w.r.t. the number of iterations in Algorithm 1.

More Verification

To further verify the effectiveness of SMS, we inspect the
performance of SMS and the optimization algorithm. We
plot the objective function value in Eq. (4) and the recog-
nition accuracy on target classes w.r.t. each iteration in Al-
gorithm 1, which are shown in Figures 3 and 4 respectively.

Firstly, we can observe from Figure 3 that the objec-
tive function value can decrease steadily with more itera-
tions and can converge with about 10 iterations, which val-
idates the effectiveness of Algorithm 1. Besides, each itera-
tion takes 8.81, 9.70, and 15.83 seconds on AwA, aPY and
SUN datasets respectively, which is quite efficient compared
with PST and TME that need to perform label propagation
on a large graph. The speed is measured using a computer
with Intel Core 17-2600 3.40 GHz CPU and 16GB memory.

Secondly, we adopt an iterative refinement procedure. In
Figure 4, we can see that the recognition accuracy can in-
crease steadily with more iterations, which indicates that we
obtain more correct pseudo labels after each iteration. By
iteratively refining the pseudo labels, the model can better
capture the structure of target classes and improve the recog-
nition performance. The results validate the efficacy of the
iterative refinement. Besides, the recognition accuracy and
the objective function value have similar trend. This phe-
nomenon indicates that our objective function can reflect the
ZSR performance. Thus, if we find more effective optimiza-
tion algorithm, we can expect better ZSR performance. In

our future research, we will investigate this interesting issue.

Last but not least, one key characteristic of the proposed
approach is the joint learning framework. The fact that the
final accuracy is higher than the one after self-initialization
using the model learned with only source classes, and the
increasing accuracy both demonstrate our motivation that
considering the knowledge from the source classes and the
structure of target classes in a unified way is indeed better
than treating the source classes and target classes separately.

Conclusion

This paper investigates the transductive ZSR problem where
labeled source images and unlabeled target images are avail-
able. We propose a novel joint leaning approach to learn the
shared model space such that the knowledge can be effec-
tively transferred between classes. It is different from ex-
isting works in three ways. Firstly, we learn class models
that can direct generate the class labels from images instead
of attribute models that recognize attributes. Secondly, we
learn a shared model space for source and target classes such
that the recognition model can be generated simply using
the attributes of classes. Thirdly, we adopt a joint learning
framework considering both source and target classes simul-
taneously. An effective and efficient optimization algorith-
m is proposed. Extensive experiments on three benchmark
datasets demonstrate the efficacy of the proposed approach.
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